

At-Home Help

CHAPTER 11

Describe and name prisms.

1. Name the prism.

2. Name the prism you could make with each base. Describe each prism by telling how many faces, edges, and vertices it has.

a) rectangle-based	b) pentagon-based prism
prism with 12 edges, 6 faces,	with 15 edges, 7 faces,
and 8 vertices	and 10 vertices

3. Circle the letter of the shape that is a prism. Tell how you know that you have chosen the correct shape.

For example, D has 2 congruent bases and all the other faces have 4 sides.

CHAPTER 11

Identifying Faces of Prisms and Pyramids

At-Home Help

Compare and sort 3-D shapes.

1. Name each shape. Use the names in the box.

- b) What do shapes C and G have in common? triangle faces
- 3. Write the letters of all the shapes that fit each description.

a) have at least 1 triangle face	B, C, G, H	
b) base is square	A, C, F	
c) all faces are triangles	Н	
d) all faces are rectangles or squares	A , E, F	

Using Nets for Rectangle-Based Prisms

Build rectangle-based prisms from nets.

You will need scissors, a ruler, and tape.

- a) Trace this net.
 Draw solid lines where there are solid lines.
 Draw dashed lines where there are dashed lines.
 - b) Cut out the net along the solid lines.
 - c) Fold along the dashed lines.
 - d) Tape the edges.
 - e) Name the 3-D shape you built.

At-Home Help

A **net** is a flat shape that folds to create a 3-D shape.

a net for a square-based prism

rectangle-based prism

Building with 3-D Shapes

Build a structure with 3-D shapes.

You will need boxes, cans, scissors, and tape.

1. a) Find 3-D shapes that you could use to build a structure.

- **b)** Plan a structure that you can build with some of the 3-D shapes you found.
- c) Build your structure. Use tape if necessary.
- d) Sketch your structure on the right side of this page.
- e) Describe your structure using math language.

Answers will vary.

f) Explain how you built your structure.

Answers will vary.

At-Home Help

Structures that we see every day are built from basic 3-D shapes.

Estimating and Measuring Capacity

Estimate and measure the amounts containers can hold.

You will need water, a measuring cup marked in millilitres and empty containers of different sizes.

- **1.** Which unit would you use to measure the capacity of each container: litres or millilitres?
 - a) swimming pool _____ litres
 - b) pop can ______millilitres
 - c) watering can _____ litres
 - d) spoon _______millilitres
- 2. Find a measuring cup marked in millilitres.

How much does it hold? <u>Answers will vary.</u>

- **3.** a) Find 5 different sizes of empty containers such as bowls, glasses, and pots.Record the containers in the chart below.
 - **b)** Compare each container to your measuring cup and estimate the capacity of the container. Record your estimate in the chart below.
 - c) Check your estimates. Pour water from the measuring cup into each container to fill it. Keep track of how many measuring cups you use. Record your measurement.

Container	My estimate	Measurement
cereal bowl	400 mL	500 mL
Answers will vary.		

At-Home Help

Capacity is the amount a container will hold.

Capacity is measured in millilitres (mL) and litres (L).

1000 mL = 1 L

 \mathbf{O}

Solve Problems About Combinations

Solve problems using a table to record combinations.

Show your work.

- 1. Julia has 3 different ice cream scoops: 200 mL, 100 mL, and 50 mL.
 - a) What possible amounts of ice cream can be measured without refilling the scoops?

Combination	Measure
1 scoop 200 mL	200 mL
1 scoop 100 mL	100 mL
1 scoop 50 mL	50 mL
2 scoops 200 mL + 100 mL	300 mL
2 scoops 200 mL + 50 mL	250 mL
2 scoops 100 mL + 50 mL	150 mL
3 scoops 200 mL + 100 mL + 50 mL	350 mL

b) What possible sizes of ice-cream cones can be made if there are 2 scoops in each cone? You can refill scoops.

Combination	Measure
2 scoops same 200 mL + 200 mL	400 mL
2 scoops same 100 mL + 100 mL	200 mL
2 scoops same 50 mL + 50 mL	100 mL
2 scoops different 200 mL + 100 mL	300 mL
2 scoops different 200 mL + 50 mL	250 mL
2 scoops different 100 mL + 50 mL	150 mL

At-Home Help

To find the different measures that can be made using a 5 mL, a 15 mL, and a 25 mL spoon without refilling any of the spoons, it is helpful to make a table.

Combination	Measure
spoon alone 5 mL	5 mL
spoon alone 15 mL	15 mL
spoon alone 25 mL	25 mL
2 spoons 5 mL + 15 mL	20 mL
2 spoons 5 mL + 25 mL	30 mL
2 spoons 15 mL + 25 mL	40 mL
3 spoons 5 mL + 15 mL + 25 mL	45 mL

CHAPTER 11

Estimating and Measuring Mass

Estimate and measure the masses of objects.

- 1. Which would you use to measure the mass of each item: grams or kilograms?
 - a) a watermelon ______ kilograms
 - b) a toothbrush _____ grams
 - c) a bag of popcorn _____ grams
 - d) a wagon ______ kilograms
- 2. Find several full containers that are measured in grams or kilograms. Dry items, such as bar soap, cereal, bread, rice, nuts, and other snack foods usually have mass units. (The mass of the packaging is not included in the mass given.)
- **3.** a) Find 5 objects of different sizes without any masses given. You can use, for example, a shoe, a book, a toy, a plate, a cushion, or a can of pop. Record the items in the chart below.
 - b) Compare each object to the items you found in Question 2 and estimate the mass of the object.
 Record your estimates in the chart below.

Item	My mass estimate
Dad's shoe	500 g
Answers will vary.	

kaging is not included in the mass given.)

At-Home Help

Mass is the amount of matter in an object. Mass can be measured in grams (g) or kilograms (kg). 1000 g = 1 kg

4. Take 1 or 2 of the objects from Question 3 to school tomorrow. Measure their masses to check your estimates.

A. 20 kg **B.** 30 g **C.** 2 kg **D.** 200 g

CHAPTER 11